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A radial basis function approximation has the form

n

s(x) LYJ<P(llx - xjI12)' x E[ii'd,
j~ I

where <p: [0,00) -->[ii' is some given function, (Y)i are real coefficients, and the
centres (x)i are points in [ii'd. For a wide class of functions <P, it is known that the
interpolation matrix A = (<p(llxj - xkll2»lk ~ 1 is invertible. Further, several re
cent papers have provided upper bounds on IIA -11/2, where the points (xj)i' satisfy
the condition Ilx) - x k 112 ;:: 8, j '" k, for some positive constant 8. In this paper,
we provide the least upper bound on IIA -1112 when the points (x j );' form any
subset of the integer lattice yd, and when <P is a conditionally negative definite
function of order 1, a large set of functions which includes the multiquadric.
Specifically, for any set of points (x) );' c yd, we provide the inequality

IIA-'112 ~ ( I: 1<;s(lhre + 21rkIl2)1)-1
kEYd

where e = [I, ... , I]T E [ii'd and where rP is the generalized Fourier transform of
<p. We provide a constructive proof that no smaller bound is valid and comment on
the relevance of the method of analysis to the problem of estimating all the
eigenvalues of such an interpolation matrix. '0 1994 Academic Press. Inc.

1. INTRODUCTION

The multivariate interpolation problem is as folIows: given points (X);~ 1

in gpd and real numbers (!);= I' construct a function s:,9P d
-) 9f such that

s(xk ) = !k' for k = 1, ... , n. The radial basis function approach is to
choose a univariate function cp: [0,00) -) .9P, a norm II . lion .'J'ld, and to let
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s take the form
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n

s(x) = 1: Yjip(llx - Xjll).
j~1

223

(1.1 )

The norm II . II will be the Euclidean norm throughout this paper. We see
that the radial basis function interpolation problem has a unique solution
for any given scalars (1);'= I if and only if the matrix (ip(IIx j - xkllWk~ I is
invertible. Such a matrix will be called a distance matrix in this paper.
These functions provide a useful and flexible form for multivariate approx
imation, but their approximation power as a space of functions is not
addressed in this paper.

A powerful and elegant theory was developed by Schoenberg and others
some 50 years ago which may be used to analyse the singularity of distance
matrices. Indeed, in Schoenberg [9] it was shown that a Euclidean distance
matrix, which arises when ip( r) = r, is invertible if n ~ 2 and the points
(x)r~ I are distinct. Further, extensions of this work by Micchelli [6]
proved that the distance matrix is invertible for several classes of func
tions, including the Hardy multiquadric, the only restrictions on the points
(x)j~ I being that they are distinct and that n" ~ 2. Thus the singularity of
the distance matrix has been successfully investigated for many useful
radial basis functions. In this paper, we bound the eigenvalue of smallest
modulus for certain distance matrices. Specifically, we provide the greatest
lower bound on the moduli of the eigenvalues in the case when the points
(x)r_, form a subset of the integers yd, our method of analysis applying
to a wide class of functions which includes the multiquadric. More pre
cisely, let N be any finite subset of the integers yd and let A%in be the
smallest eigenvalue in modulus of the distance matrix (ip(IIj - k 1I))j.k E N'

Then the results of Sections 3 and 4 provide the inequality

where Cop is a positive constant for which an elegant formula is derived.
We also provide a constructive proof that Cop cannot be replaced by any
larger number, and it is for this reason that we shall describe inequality
0.2) as an optimal lower bound. Similarly, we shall say that an upper
bound is optimal if none of the constants appearing in the inequality can
be replaced by smaller numbers.

It is crucial to our analysis that the distance matrix (ip(lli - k 1\)\. kEN

may be embedded in the bi-infinite matrix (ip(IU - k I\))j, k E yd. Such a
bi-infinite matrix is called a Toeplitz matrix if d = 1. We shall use this
name for all values of d, since we use the multivariate form of the Fourier
analysis of Toeplitz forms (see Grenander and Szego [5]),
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Of course, inequality (1.2) also provides an upper bound on the norm of
the inverse of the distance matrices generated by finite subsets of the
integers X". This is not the first paper to address the problem of
bounding the norms of inverses of distance matrices and we acknowledge
the papers of Ball (2) and Narcowich and Ward [7,8), which first interested
the author in such estimates. Their results are not limited to the case
when the data points are a subset of the integers. Instead, they apply when
the points satisfy the condition II x j - X k II Z E for j *- k, where E is a
positive constant, and they provide lower bounds on the smallest modulus
of an eigenvalue for several functions cp, including the multiquadric. We
will find that these bounds are not optimal, except in the special case of
the Euclidean norm in the univariate case. Further, our bounds apply to
all the conditionally negative definite functions of order 1. The definition
of this class of functions may be found in Section 3.

We shall often use the theory of generalized Fourier transforms in this
paper, for which our principal reference will be the excellent book of
Jones [4]. These transforms are precisely the Fourier transforms of tem
pered distributions constructed in Schwartz (10). First, however, Section 2
presents several theorems which require only the classical theory of the
Fourier transform. These results will be necessary in Section 3.

2. TOEPLITZ FORMS AND THETA FUNCTIONS

We require several properties of the Fejer kernel, which is defined as
follows. For each positive integer n, the nth univariate Fejer kernel is the
positive trigonometric polynomial

"
K,,( t) L (1

k~ -"

Ikl/n) exp (ikt)

sin 2 nt/2

n sin 2 t/2'

Further, the nth multivariate Fejer kernel is defined by the product

K,,(tl"'" til) = K,,(t l )K,,(t2 ) .,. K,,(t,,), t = (tl, ... ,t,,) E.'JR".

(2.2)

LEMMA 2.1. The univariate kernel enjoys the following property: for any
continuous 21T-periodic function f:9f ~ 9f and for all x E 9f we have

lim (21T)-lj27rK ,,(l -x)f(t)dt =f(x).
"---'00 0
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Moreover, this kernel satisfies the equations

(27T)-1 {7TKn(t) dt = I
II

and

Kn(t) =In-112''i:1 exp(ikt) 1

2

k~1I

225

(2.3)

(2.4)

Proof Most textbooks on harmonic analysis contain the first property
and (2.3). For example, see p. 89ff of Vol. ] of Zygmund [13]. It is
elementary to deduce (2.4) from (2.1). I

LEMMA 2.2. For every continuous [0, 27T ]d-periodic function f:.w d
---'> .W,

the multivariate FeNr kernel gives the convergence property

lim (27T) -d1 Kn(t - x)f( t) dt = f( x)
n ~ oc [0.2 7T]"

for every x E 9fd. Further, K n is the square of the modulus of a trigonomet
ric polynomial with real coefficients and

(27T)-d 1 Kn(t) dt = 1.
[II, 27T]"

Proof The first property is Theorem 1.20 of Chap. 17 of Zygmund [13].
The last part of the lemma is an immediate consequence of (2.3), (2.4) and
the definition of the multivariate Fejer kernel. I

All sequences will be real sequences in this paper. Further, we shall say
that a sequence (a )y" := {a)j E y" is finitely supported if it contains only
finitely many nonzero terms. The scalar product of two vectors x and y in
md will be denoted by xy.

PROPOSITION 2.3. Let f:91d
---'> 9l be an absolutely integrable continuous

function whose Fourier transform fis also absolutely integrable. Then for any
finitely supported sequence (a)y", and for any choice of points (x)y" in
9ld, we have the identity

I: ajad( x j - xd = (27T) -d ["I I: a j exp (ixjn1
2

fun dt·
j, kEY" ,fi' j EY"
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Proof The function c';if" 3 x >-> Lj.kajakf(x + x j - x k ) is absolutely
integrable. Its Fourier transform is given by

and is therefore absolutely integrable. Applying the Fourier inversion
theorem, we have

L aJakf(x + x j - xd
J. k Eyd

Setting x = 0 produces the stated equation. I
In this paper, a key role will be played by the symbol function

(T (0 = L I( f, + 2rrk ) , f, E 9?".
kEyd

(2.5)

If IE U(9?"), then (T is an absolutely integrable function on [0, 2rr]d and
its defining series is absolutely convergent almost everywhere. These facts
are consequences of the relations

the exchange of integration and summation being a consequence of
Fubini's theorem. If the points (x)zJ are integers, then we readily deduce
the following bounds on the quadratic form Lj.kEZdajakfU - k).

PROPOSITION 2.4. Let f satisfy the conditions of Proposition 2.3 and let
(a)zd be a finitely supported sequence. Then we have the identity
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Further, letting m = inf{u({):t" E [0, 27T ]d} and M = sup{u(t" ):t" E

[0, 27T ]d}, we have the bounds

m L aJ s L ajadU - k) s M L aJ.
jEyd j. kEyd jEyd

Proof Proposition 2.3 implies the equation

L ajadU - k)
j. kEyd

L (27T)-d1 I L ajexP(iJoI2/(t" + 27Tk) dt"
kEyd [0,271")d jEyd

= (27T)-d1 I L ajexP(iJoI2U(Odt",
[0.271"]d jEyd

the exchange of integration and summation being justified by Fubini's
theorem. For the upper bound, the Parseval theorem yields the expres
sions

s M L aJ.
jEyd

The lower bound follows similarly and the proof is complete. I

The inequalities of the last proposition enjoy the following optimality
property.

PROPOSITION 2.5. Let f satisfy the conditions of Proposition 2.3 and
suppose that the symbol function is continuous, Then the inequalities of
Proposition 2.4 are optimal lower and upper bounds.

Proof Let t"M E [0, 27T Jd be a point such that U(t"M) = M, which
exists by continuity of the symbol function. We shall construct a set
{(aln)j E .2'd: n = 1,2, ... ) of finitely supported sequences such that
LjE.2'dla}nl I2 = 1, for all n, and

lim L a}n)a~n). fU - k) = M.
n--->oo j,kEyd

(2.7)
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We recall from Lemma 2.2 that the multivariate Fejer kernel is the
square of the modulus of a trigonometric polynomial with real coefficients.
Therefore there exists a finitely supported sequence (aj"))zd satisfying the
relation

I
L aJ"lexp(ijOI2 = KnU - ~M)' ~ Egpd. (2.8)

jE7 d

Further, the Parseval theorem and Lemma 2.2 provide the equations

and

Now it follows from (2.6) and (2.8) that the limit (2.7) holds. The lower
bound of Proposition 2.4 is dealt with in the same fashion. I

The set of functions satisfying the conditions of Proposition 2.5 is
nonvoid. For example, suppose that we have I(~) = &(II~II-d-8), for large
II~II, where 0 is a positive constant. Then the series defining the symbol
function (J converges uniformly, by the Weierstrass M-test, and (J is
continuous, being a uniformly convergent sum of continuous functions.
These remarks apply when f is a Gaussian, which is the subject of the rest
of this section. We shall see that the analysis of the Gaussian provides the
key to all the results of this paper.

PROPOSITION 2.6. Let A be a positil'e constant and let f( x) =

exp( - AllxI1 2), for x E gpd. Then f satisfies the conditions of Proposition 2.5.

Proof The Fourier transform of f is the function 1(0 =

(1T/A)d/2 exp( -11~112/4A), which is a standard calculation of the classical
theory of the Fourier transform. It is clear that f satisfies the conditions of
Proposition 2.3, and that the symbol function is the expression

(J(O = (1T/A)d/2 I: exp(-II~ + 21TkI1 2/4A), ~ Egpd. (2.9)
kEyd

Finally, the decay of the Gaussian ensures that (J is continuous, being a
uniformly convergent sum of continuous functions. I
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This result is of little use unless we know the minimum and maximum
values of the symbol function for the Gaussian. Therefore we show next
that explicit expressions for these numbers may be calculated from proper
ties of Theta functions. Lemmata 2.7 and 2.8 address the cases when
d = I and d ~ 1, respectively.

LEMMA 2.7. Let A be a positil'e constant and let £1: Yt --.Yt be the
2rr-periodic function

£I(t)= L exp(-A(t+ 2krr)Z).
k = -oc

Then £1(0) ~ £,(1) ~ EJ(rr) for all t EYt.

Proof An application of the Poisson summation formula provides the
relation

EJ(t) = (4rrA)-I/z L e-k2/4Aeikl
k ~ -oc

= (4rrA)-I/Z(1 + 2 i: e-k
2
/ 4ACOS(kt)).

k=1

This is a Theta function. Indeed, using the notation of Whittaker and
Watson [11, Sect. 21.11], it is a Theta function of Jacobi type

oc

1't3(z,q) = 1 + 2 L qk
2
cos(2kz),

k ~ J

where q E'iF and Iql < 1. Choosing q = e- J
/

4
\ we obtain the relation

-I/ZEJ(t) = (4rrA) l'f 3(tj2,q).

The useful product formula

1't3(Z,q) = G n (1 + 2q Zk-I cos2z + q4k-Z),
k~1

where G = n~~ 10 - qZk), is given in Whittaker and Watson [11, Sect.
21.3 and 21.42]. Thus

oc

E J( t) = (4rrA) -I/Z G n (1 + 2q Zk-1 cos t + q4k-Z),
k~l

t EYt.

Now each term of the infinite product is a decreasing function on the
interval [0, rr], which implies that E I is a decreasing function on [0, rr].

640/79/2-5
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Since E, is an even 27T-periodic function, we deduce that E, attains its
global minimum at t = 7T and its maximum at t = O. I

LEMMA 2.8. Let A he a positil"e constant and let Ed: .~d ~!ltd be the
[0,2 7T Jd-periodic function gil"en by

EAx) = L exp( -Alit + 2k7rln,
kE.7"

Then EiO) ~ Ed(t) ~ Ei7Te), where e = [1,1, ... ,1]'.

Proof The key observation is the equation

d

EAt) = n EI(td·
k~1

Thus E'/O) = nt~,EI(O) ~ nt~IEI(rk) = E,/l) ~ nt~IEI(7T) =
E/7Te), using the previous lemma. I

These lemmata imply that in the Gaussian case the maximum and
minimum values of the symbol function occur at t = 0 and t = 7Te,
respectively, where e = (1, ... , I]T. Therefore we deduce from formula
(2.9) that the constants of Proposition 2.4 are the expressions

m = (7T/A)d/2 L exp( -117Te + 27TkI12/4A)
kE.7"

M=(7T/A)d/2 L exp(-II7TkI1 2/A).
kE:Z"

and

(2.10)

3. CONDITIONALLY NEGATIVE DEFINITE FUNCTIONS OF ORDER 1

In this section we derive the optimal lower bound on the eigenvalue
moduli of the distance matrices generated by the integers for a class of
functions including the Hardy multiquadric.

DEFINITION 3.1. A real sequence (Y)z" is said to be zero-summing if it
is finitely supported and r. j E Z" Yj = O.

Let cp: [0, (0) ~ 9/ be a continuous function of algebraic growth. Thus it
is meaningful to speak of the generalized Fourier transform of the radially
symmetric function (cp(llxll): x E 9/d}. We denote this transform by (eP(lltll):
t E 9/d}, so emphasizing that it is a radially symmetric distribution, but we
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note that rj, depends on d. We shall restrict attention to the collection of
functions described below.

DEFINITION 3.2. A function cp: [0, 00) ~ Yl will be termed admissible if
it is a continuous function of algebraic growth which satisfies the following
conditions:

1. rj,is a continuous function on Yld
\ {O}.

2. The limit limll~11 ~ ()1I~lId+ lrj,(II~II) exists.

3. The integral f{II~1I2l}1rj,(Iltll)ldt exists.

We now address the analogue of Proposition 2.3 for an admissible
function.

PROPOSITION 3.3. Let cp: [0, 00) ~ Yl be an admissible function and let
(Y)zd be a zero-summing sequence. Then for any choice of points (x)z" in
.'/fit we have the identity

j.k~Z/jYkCP(IIXj - xkll) = (2rr) -d -klE/j eXP(ixj oI
2

rj,(lltll) dt·

(3.1 )

Proof Let g: Yl d ~ Yl be the function defined by

get) =1 I: YjexP(ixjo!2cp(lItll).
JEZd

Then g is an absolutely integrable function on Yl d
, because of the

conditions on cp and because (Yj )Zd is a zero-summing sequence. Thus g
is the generalized transform of Lj,kYjYkCP(11 . + xj - xkll), and by standard
properties of generalized Fourier transforms we deduce that

I>jYkCP(llx + xj - xkll)
j,k

The proof is completed by setting x = O. I

We come now to the subject that is given in the title of this section.

DEFINITION 3.4. Let cp: [0, 00) ~ Yl be a continuous function. We shall
say that cp is conditionally negative definite of order 1 on every .'/fd,
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hereafter shortened to CN D I, if we have the inequality

L YjYkCP(llxj - X k II) ~ 0,
j. k <=.7.1

for every positive integer d, for every zero-summing sequence (Y)yd and
for any choice of points (x):.rd in gr".

Such functions were completely characterized by Schoenberg [9).

THEOREM 3.5. A continuous function cp: [0, x) ->gr is CNDI if and
only if there exists a niJndecreasing function a: [0, (0) ->gr such that

cp(r) = cp(o) + ([I - exp( -tr 2)]t- 1 da(t),
o

and the integral f~t -I daU) exists.

Proof This is Theorem 6 of Schoenberg [9). I
Thus da is a positive Borel measure such that

for r > 0,

(da(t) <00
lJ

and

Further, it is a consequence of this theorem that there exist constants A
and B such that cp(r) ~ Ar 2 + B, where A and B are constants. In order
to prove this assertion, we note the elementary inequalities

and

Thus A = a(I) - a(O) and B = cp(O) + f~t - 1 daU) suffice. Therefore we
may regard a CNDI function as a tempered distribution and it possesses a
generalized Fourier transform. The following relation between the trans
form and the integral representation of Theorem 3.5 will be essential to
our needs.

THEOREM 3.6. Let cp: [0, (0) -> gr be an admissible CNDI function. For
~ E grd \ {O}, we have the formula

rP(II~II) = - to exp( -11~112/4t)(7T/t)dI2t-1da(t). (3.2)
lJ
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Before embarking on the proof of this theorem, we require some
groundwork. We shall say that a function f: 9i'd \ {O} ~ 9i' is symmetric if
f( -x) = f(x), for every x E9i'd \ fO}.

LEMMA 3.7. Let a: [0, 00) ~ 9i' be a nondecreasing function such that
the integral f~t-l da(t) exists. Then the function

g E9f d \ {O},

(3.3)

is a symmetric smooth function, that is every derivative exists.

Proof For every nonzero g, the limit

implies that the integrand of expression (3.3) is a continuous function on
[0, (0). Therefore, it follows from the inequality

that the integral is well-defined. Further, a similar argument for nonzero g
shows that every derivative of the integrand with respect to g is also
absolutely integrable for t E (0, (0), which implies that every derivative of
l/J exists. The proof is complete, the symmetry of l/J being obvious. I

LEMMA 3.8. Let f: 9i'd ~ 9i' be a symmetric absolutely integrable func
tion such that

for every finitely supported sequence (a):zd and for any choice of points
(Xj):zd. Then f must vanish almost everywhere.

Proof The given conditions on f imply that the Fourier transform! is
a symmetric function that satisfies the equation

I: ajak!(xj -xk ) = 0,
j,kEyd

for every finitely supported sequence (a)yd and for all points (x)y" in
9i'd. Let I and m be different integers and let a, and am be the only

640(79/2-6
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nonzero elements of (a j )Zd. We now choose any point ~ E gpd \ {O} and
set Xl = 0, x m = ~, which provides the equation

Therefore 1(0) = f<~) = 0, and since ~ was arbitrary, 1 can only be the
zero function. Consequently f must vanish almost everywhere. I

COROLLARY 3.9. Let g: gpd \ {O} -> gp be a symmetric continuous func
tion such that

(3.4)

and

(3.5)

for every zero-summing sequence (Y)Zd and for any choice ofpoints (X)Zd.
Then g(~) = 0 for every ~ E gpd \ to}.

Proof For any integer k E {l, ... , d} and for any positive real number
A, let h be the symmetric function

The relation

and condition (3.4) imply that h is absolutely integrable.
Let (a)zd be any real finitely supported sequence and let (b)Zd be any

sequence of points in gpd. We define a real sequence (Yj)Zd and points
(X)Zd in gpd by the equation

r. Yj exp(ixjO = sin A~k r: aj exp(ibj~)'
jEZd jEZd

Thus (Y)Zd is a sequence of finite support. Further, setting ~ = 0, we
deduce that I: j E Zd Yj = 0, so (Yj )Zd is a zero-summing sequence. By
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condition (3.5), we have

235

Therefore we can apply Lemma 3.8 to h, finding that it vanishes almost
everywhere. Hence the continuity of g for nonzero argument implies that
g(Osin 2 A~k = 0 for ~ *' O. But for every nonzero ~ there exist k E

0, ... , d} and A > 0 such that sin Agk *' O. Consequently g vanishes on
9fd \ {O}. I

We now complete the proof of Theorem 3.6.

Proof of Theorem 3.6. Let (Y)xd be a zero-summing sequence and let
(x)xd be any set of points in .9fd. Then Theorem 3.5 provides the
expression

L YjYd,(lI x j - xkll)
j,kEyd

this integral being well-defined because of the condition L j E xd Yj = O.
Therefore, using Proposition 2.3 with f(') = exp( - t II . 11

2
) in order to

restate the Gaussian quadratic form in the integrand, we find the equation

L YjYk<P(lIxj - xkll)
j,kEyd

- joc[< 2'7T) -d1dl L Yj exp{ l\g) 1

2

<'7TIt) d/2
o .9l jE:Zd

X exp( -lItll'/4') dt}-' da(')

= (2'7T)-d ldl L YjexP{ixi)12l/J(t)dg,
91 j EZd

where we have used Fubini's theorem to exchange the order of integration
and where l/J is the function defined in (3.3). By comparing this equation
with the assertion of Proposition 3.3, we see that the difference g(g) =
i,O(llglD - l/J(O satisfies the conditions of Corollary 3.9. Hence i,O(llg!D =

I/J(g) for all g E.9fd \ {O}. The proof is complete. I
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Remark. An immediate consequence of this theorem is that the gener
alized Fourier transform of an admissible CNDl function cannot change
sign.

The appearance of the Gaussian quadratic form in the proof of Theo
rem 3.6 enables us to use the bounds of Lemma 2.8, which gives the
following result.

THEOREM 3.10. Let cp: [0,00) --+ g; be an admissible CNDl function and
let (Y).:zd be a zero-summing sequence. Then we have the inequality

where e = [1, ... , l]T.

Proof Applying 0.0 and dissecting ,9fd into integer translates of the
cube [0, 21T]d, we obtain the equations

I L, YjYkCP(IU - kll)1 = (21T)-d 1. dl L, yjexp(ijoj2\l,D(llgll)\dg
j, k E%d .9f jE%d

= (21T)-d 1 I L YjexP(ijOI2/0'(nldg,
[O,21T)d jE%d

(3.6)

where the interchange of summation and integration is justified by Fubini's
theorem, and where we have used the fact that l,D does not change sign.
Here the symbol function has the usual form (2.5). Further, using 0.2), we
again apply Fubini's theorem to deduce the formula

1000nl= L 1l,D(llg+21Tkll)!
kE%d

= {~( L exp( -lig + 21TkI1 2/4t))(1T/t)d/2 t - t da(t).
o kE%d

Then it follows from Lemma 2.8 that we have the bound

100(nl ~ {X'( E exp( -1I1Te + 21Tk I1
2/4t))(1T/t)d/2 t - 1 da(t)

o kE%d

=IO'(1Te)l. (3.7)

The required inequality is now a consequence of 0.6) and the Parseval
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When the symbol function is continuous on .9fd \ 21r:zd
, we can show

that the previous inequality is optimal using a modification of the proof of
Proposition 2.5. Specifically, we construct a set {( y}nl)zd: n = 1,2, ... ) of

zero-summing sequences such that limn~ooI:jE.ziyYl)2= 1 and

!~oo I L YY)Yknl<p( Ilj - k II) I= IlT( 1re) I,
j, k Eyd

which implies that we cannot replace IlT(1rdl by any larger number in
Theorem 3.10.

COROLLARY 3.11. Let <p: [0,(0)~.9f satisfy the conditions of Theorem
3.10 and let the symbol function be continuous in the set .9?d \ 21r:zd. Then
the bound of Theorem 3.10 is optimal.

Proof Let m be an integer such that 4m ~ d + 1 and let Sm be the
trigonometric polynomial

Recalling from Lemma 2.2 that the multivariate Fejer kernel is the square
of the modulus of a trigonometric polynomial with real coefficients, we
choose a finitely supported sequence (YY»Zd satisfying the equations

I L yY)eXP(ijo \2 =Kn(~-1re)Sm(O,
jEyd

(3.8)

Further, setting ~ = 0 we see that (YY».zd is a zero-summing sequence.
Applying (3.6), we find the relation

I L yYlYkn)<P( IIj - k II) I
j, k Eyd

Moreover, because the second condition of Definition 3.2 implies that
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Sm 10"1 is a continuous function, Lemma 2.2 provides the equations

lim (27T)-d1 K"U - 7Te)Sm(OIO"(Old~
n->~ [0. 27TJ"

= Sm(7Te)IO"(7Te)1 =IO"(7Te)l.

It follows from (3.9) that we have the limit

Finally, since Sm is a continuous function, another application of
Lemma 2.2 yields the equation

By substituting expression 0.8) into the left-hand side and employing the
Parseval relation

4. ApPLICATIONS

This section relates the optimal inequality given in Theorem 3.10 to the
spectrum of the distance matrix, using an approach due to Ball [2]. We
apply the following theorem.

THEOREM 4.1. Let A E .9f" x" be a symmetric matrix with eigenvalues
A, ~ ... ~ A". Let E be any subspace of ,9f" of dimension m, Then we
have the inequality

Proof This is the Courant-Fischer minimax theorem. See Wilkinson
[12, p. 99ff]. I

For any finite subset N of yd, let AN be the distance matrix (rp(llj 
kll»j,kEN' Further, let the eigenvalues of AN be A, ~ ... ~ A1N1 , where
INI is the cardinality of N, and let A~in be the smallest eigenvalue in
modulus.
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PROPOSITION 4.2. Let cp: [0, (0) -) gz be a eNDl function that is not
identically zero. Let cp(O) ~ 0 and let IJ.- be a positive constant such that

L: YjYkCP(llj-kll):::; -IJ.- E y},
i.ke%d je%d

(4.1 )

for every zero-summing sequence (Y)Zd. Then for every finite subset N of yd
we have the bound

Proof Equation (4.1) implies that

for every vector (Y)j eN such that r. j EN Yj = O. Thus, Theorem 4.1 im
plies that the eigenvalues of AN satisfy - IJ.- ~ A2 ~ •.. ~ A1N1 , where
the subspace E of that theorem is simply the span of the vector
[1, 1, ... , l]T E gzN. In particular, 0 > A2 ~ ... ~ A1N1 • This observation
and the condition cp(O) ~ 0 provide the expressions

INI INI

o :::; trace AN = ,\ 1 + L'\ j = ,\ 1 - E 1,\ j I.
j=2 j~2

Hence we have the relations '\~in = '\2 :::; - IJ.-. The proof is complete. I

We now turn to the case of the multiquadric CPc(r) = (r 2 + C 2 )1/2, in
order to furnish a practical example of the above theory. This is a
non-negative CND1 function (see Micchelli [6]) and its generalized Fourier
transform is the expression

for nonzero ~, which may be found in Jones [4]. Here {Kv(r): r > O} is a
modified Bessel function which is positive and smooth in gz+, has a pole
at the origin, and decays exponentially (Abramowitz and Stegun [l]).
Consequently, CPc is a non-negative admissible CND1 function. Further,
the exponential decay of ~c ensures that the symbol function

0A 0 = L ~c(ll~ + 21Tkll)
ke%d

(4.2)

is continuous for ~ E!ltd \ 21Tyd. Therefore, given any finite subset N of
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Zd, Theorem 3.10 and Proposition 4.2 imply that the distance matrix AN
has every eigenvalue bounded away from zero by at least

J.L e = I: !iPe(ll7re + 27Tkll) I,
kEyd

(4.3)

where e = [1,1, ... , IF E .9ld . Moreover, Corollary 3.11 shows that this
bound is optimal.

It follows from (4.3) that J.L e ~ 0 as c ~ 00, because of the exponential
decay of the modified Bessel functions for large argument. For example, in
the univariate case we have the formula

and Table I displays some values of J.L e• Of course, a practical implication
of this result is that we cannot expect accurate direct solution of the
interpolation equations for even quite modest values of c, at least without
using some special technique.

The optimal bound is achieved only when the number of centres is
infinite. Therefore it is interesting to investigate how rapidly 1A%in I con
verges to the optimal lower bound as INI increases. Table II displays
IA%;nl = J.Le(n), say, for the distance matrix (!f'c(llj - kll»;k~o for several
values of n when c = 1. The third column lists close estimates of J.Lc(n)
obtained using a theorem of Szeg6 (see Sect. 5.2 of Grenander and Szeg6
[5]). Specifically, Szeg6's theorem provides the approximation

where (J'c is the function defined in (4.2). This theorem of Szeg6 requires
the fact that the minimum value of the symbol function is attained at 7T,

TABLE I
The Optimal Bound on the Smallest Eigenvalue as c -+ 00

c

1.0
2.0
3.0
4.0
5.0

10.0
15.0

Optimal bound

4.319455 X 10- 2

2.513366 x 10 - 3

1.306969 x 10 - 4

6.462443 X IO- h

3.104941 X 10- 7

6.542373 x 10 - 14

2.089078 x 10 - 20
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TABLE"
Some Calculated and Estimated Values of A~,n when c = I

n JJ.t(n) al(7T + 7T/n)

100 4.324685 X 10- 2 4.324653 x 10 ~ 2

150 4.321774 x 10- 2 4.321765 X 1O~2

200 4.320758 X 10- 2 4.320754 x 10 ~ 2

250 4.320288 x 10- 2 4.320286 x 10 - 2

300 4.320033 x 10 - 2 4.320032 x 10 - 2

350 4.319880 x 10- 2 4.319879 X 10- 2

which is inequality (3.7). Further, it provides the estimates

k=1, ... ,n-1,

for all the negative eigenvalues of the distance matrix. Figure 1 displays
the numbers {- 1I Ak: k = 2, ... , n} and their estimates {- 1I u(-lT +
k7TIn): k = 1, ... , n - l} in the case when n = 100. We see that the
agreement is excellent. Furthermore, this modification of the classical
theory of Toeplitz forms also provides an interesting and useful perspec
tive on the construction of efficient preconditioners for the conjugate
gradient solution of the interpolation equations. We include no further

25 .._~~

90 100XO70

....
'........................

fot'a.

........
'.'.'.'.'.................

"'oL-._-'--~-~-~--~-~-~~:!!ilt....._ ........J
o 10 20 30 40 50 60

15

20

10

FIG. 1. Spectral estimates for a distance matrix of order 100. Key: (+) calculated; (x)

estimated.
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information on these topics, this last paragraph being presented as an
aperitif to the paper of Baxter [3).
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